Interleukin-7 Induces Osteoclast Formation via STAT5, Independent of Receptor Activator of NF-kappaB Ligand
نویسندگان
چکیده
Interleukin-7 (IL-7), which is required for the development and survival of T cells in the thymus and periphery, plays a role in joint destruction. However, it remains unclear how IL-7 affects osteoclast formation. Thus, we investigated the mechanism by which IL-7 induced osteoclast formation through IL-7 receptor α (IL-7Rα) in osteoclast precursors. We cultured peripheral blood mononuclear cells or synovial fluid mononuclear cells with IL-7 in the presence or absence of an appropriate inhibitor to analyze osteoclast formation. We also constructed IL-7Rα-expressing RAW264.7 cells to uncover the mechanism(s) by which IL-7 induced osteoclast formation differed from that of receptor activator of nuclear factor κB ligand (RANKL). We found that IL-7 induced osteoclast formation of human monocytes from peripheral blood or synovial fluid in a RANKL-independent and a signal transducer and activator of transcription 5 (STAT5)-dependent manner. IL-7-induced osteoclasts had unique characteristics, such as small, multinucleated tartrate-resistant acid phosphatase positive cells and no alterations even when RANKL was added after IL-7 pretreatment. RAW264.7 cells, if overexpressing IL-7Rα, also were able to differentiate into osteoclasts by IL-7 through a STAT5 signaling pathway. Furthermore, IL-7-induced osteoclast formation was repressed by inhibitors of the IL-7R signaling molecules Janus kinase and STAT5. Our findings demonstrate that IL-7 is a truly osteoclastogenic factor, which may induce osteoclast formation via activation of STAT5, independent of RANKL. We also suggest the possibility that an IL-7R pathway blocker could alleviate joint damage by inhibiting osteoclast formation, especially in inflammatory conditions.
منابع مشابه
Corrigendum: Interleukin-7 Induces Osteoclast Formation via STAT5, Independent of Receptor Activator of NF-kappaB Ligand
[This corrects the article on p. 1376 in vol. 8, PMID: 29104576.].
متن کاملNF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1.
Postmenopausal osteoporosis and rheumatoid joint destruction result from increased osteoclast formation and bone resorption induced by receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor (TNF). Osteoclast formation induced by these cytokines requires NF-kappaB p50 and p52, c-Fos, and NFATc1 expression in osteoclast precursors. c-Fos induces NFATc1, but the relationship betw...
متن کاملIL-23 induces receptor activator of NF-kappaB ligand expression on CD4+ T cells and promotes osteoclastogenesis in an autoimmune arthritis model.
IL-23, a clinically novel cytokine, targets CD4(+) T cells. Recent IL-1Ra(-/-) mouse studies have demonstrated that IL-23 indirectly stimulates the differentiation of osteoclast precursors by enhancing IL-17 release from CD4(+) T cells. IL-17, in turn, stimulates osteoclastogenesis in osteoclast precursor cells. In this study, we found that IL-23 up-regulates receptor activator of NF-kappaB lig...
متن کاملIncreased signaling through p62 in the marrow microenvironment increases myeloma cell growth and osteoclast formation.
Adhesive interactions between multiple myeloma (MM) cells and marrow stromal cells activate multiple signaling pathways including nuclear factor kappaB (NF-kappaB), p38 mitogen-activated protein kinase (MAPK), and Jun N-terminal kinase (JNK) in stromal cells, which promote tumor growth and bone destruction. Sequestosome-1 (p62), an adapter protein that has no intrinsic enzymatic activity, serve...
متن کاملIκB kinase (IKK)β, but not IKKα, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss
Transcription factor, nuclear factor kappaB (NF-kappaB), is required for osteoclast formation in vivo and mice lacking both of the NF-kappaB p50 and p52 proteins are osteopetrotic. Here we address the relative roles of the two catalytic subunits of the IkappaB kinase (IKK) complex that mediate NF-kappaB activation, IKKalpha and IKKbeta, in osteoclast formation and inflammation-induced bone loss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017